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1 Find the term independent ofx in the expansion of(2x + 1

x2
)6

. [3]

2 A curve has equationy = 3x3 − 6x2 + 4x + 2. Show that the gradient of the curve is never negative.
[3]

3 (i) Sketch, on a single diagram, the graphs ofy = cos 2θ andy = 1
2 for 0 ≤ θ ≤ 2π. [3]

(ii) Write down the number of roots of the equation 2 cos 2θ − 1 = 0 in the interval 0≤ θ ≤ 2π. [1]

(iii) Deduce the number of roots of the equation 2 cos 2θ − 1 = 0 in the interval 10π ≤ θ ≤ 20π. [1]

4 A function f is defined forx ∈ > and is such that f′(x) = 2x − 6. The range of the function is given by
f(x) ≥ −4.

(i) State the value ofx for which f(x) has a stationary value. [1]

(ii) Find an expression for f(x) in terms ofx. [4]
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The diagram represents a metal plateOABC, consisting of a sectorOAB of a circle with centreO and
radiusr, together with a triangleOCB which is right-angled atC. Angle AOB = θ radians andOC
is perpendicular toOA.

(i) Find an expression in terms ofr andθ for the perimeter of the plate. [3]

(ii) For the case wherer = 10 andθ = 1
5π, find the area of the plate. [3]

6 (a) The sixth term of an arithmetic progression is 23 and the sum of the first ten terms is 200. Find
the seventh term. [4]

(b) A geometric progression has first term 1 and common ratior. A second geometric progression
has first term 4 and common ratio14r. The two progressions have the same sum to infinity,S.
Find the values ofr andS. [3]
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The diagram shows the dimensions in metres of an L-shaped garden. The perimeter of the garden is
48 m.

(i) Find an expression fory in terms ofx. [1]

(ii) Given that the area of the garden isA m2, show thatA = 48x − 8x2. [2]

(iii) Given thatx can vary, find the maximum area of the garden, showing that this is a maximum
value rather than a minimum value. [4]

8 Relative to an originO, the pointA has position vector 4i + 7j − pk and the pointB has position vector
8i − j − pk, wherep is a constant.

(i) Find
−−→
OA.

−−→
OB. [2]

(ii) Hence show that there are no real values ofp for which OA andOB are perpendicular to each
other. [1]

(iii) Find the values ofp for which angleAOB = 60◦. [4]

9 A line has equationy = kx + 6 and a curve has equationy = x2 + 3x + 2k, wherek is a constant.

(i) For the case wherek = 2, the line and the curve intersect at pointsA andB. Find the distance
AB and the coordinates of the mid-point ofAB. [5]

(ii) Find the two values ofk for which the line is a tangent to the curve. [4]

[Questions 10 and 11 are printed on the next page.]
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The diagram shows the curvey =
√
(1 + 2x) meeting thex-axis at A and they-axis at B. The

y-coordinate of the pointC on the curve is 3.

(i) Find the coordinates ofB andC. [2]

(ii) Find the equation of the normal to the curve atC. [4]

(iii) Find the volume obtained when the shaded region is rotated through 360◦ about they-axis. [5]

11 Functions f and g are defined by

f : x  → 2x2 − 8x + 10 for 0≤ x ≤ 2,

g : x  → x for 0 ≤ x ≤ 10.

(i) Express f(x) in the forma(x + b)2 + c, wherea, b andc are constants. [3]

(ii) State the range of f. [1]

(iii) State the domain of f−1. [1]

(iv) Sketch on the same diagram the graphs ofy = f(x), y = g(x) andy = f −1(x), making clear the
relationship between the graphs. [4]

(v) Find an expression for f−1(x). [3]
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